

R5542Z Series

6 A Low ON Resistance Nch Load Switch IC with Voltage Detector

NO.EA-335-181030

OUTLINE

The R5542Z is a Nch. load switch IC with a voltage detector. The R5542Z is an ideal load switch IC for supplying the power from the battery to the load circuit. A built-in Nch. driver transistor with typically 9 m Ω ON resistance allows the R5542Z to provide a low dropout voltage and prevents the reverse current during shutdown mode. Internally, the R5542Z consists of an internal voltage step-up circuit, a soft-start circuit, a chip enable circuit and a UVLO circuit.

The R5542Z is offered in an ultra-small WLCSP-12-P3 package which can achieve the smallest possible footprint solution on boards where area is limited.

FEATURES

Load Switch Section

•	Input Voltage Range		2.	3 \	V to 5.5	V
---	---------------------	--	----	-----	----------	---

- Output Current · · · · DC Max. 6 A
- Output Pulsed Current ······ Max. 12 A (Pulsed at 1 ms, 10% Duty Cyce)
- Switch ON Resistance $9 \text{ m}\Omega$ (V_{IN} = 3.0 V, I_{OUT} = 300 mA)
- Reverse Current Blocking (RCB) during shutdown mode
- Soft-start Function

Voltage Detector Section

Supply Current	Гур.	$1.0 \mu A$	$(V_{VDI} = 2.0)$	V)
----------------	------	-------------	-------------------	----

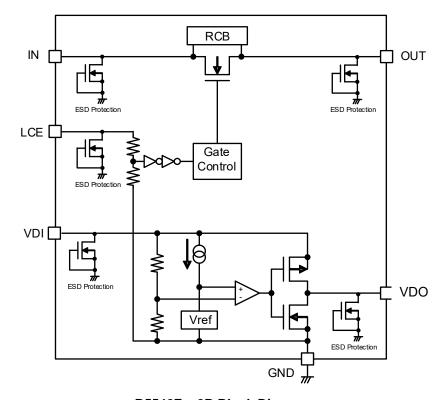
- Operating Voltage Range ································ 1.2 V to 5.5 V (Ta = 25°C)
- Detector Threshold Accuracy · ±2.0%
- Detector Threshold Temperature Coefficient · · · · · Typ. ±100 ppm/°C
- Output Type · · · · · CMOS
- Package · · · · · WLCSP-12-P3

APPLICATIONS

- Smart Phones, Tablet PCs
- Storage, Portable Devices

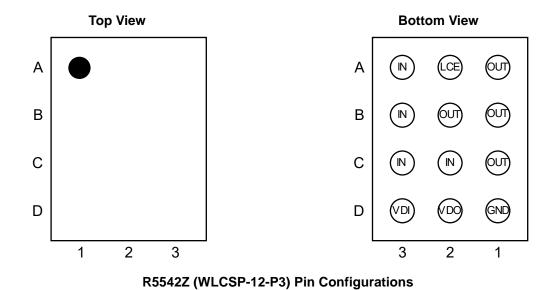
NO.EA-335-181030

SELECTION GUIDE


The detector threshold is a user-selectable option.

Selection Guide

Product Name	Package	Quantity per Reel	Pb Free	Halogen Free
R5542Zxx2B-E2-F	WLCSP-12-P3	4,000 pcs	Yes	Yes


xx: Specify the detector threshold within the range of 2.0 V (20) to 5.0 V (50) in 0.1 V steps.

BLOCK DIAGRAMS

R5542Zxx2B Block Diagram

PIN DESCRIPTIONS

R5542Z Pin Descriptions

Pin No.	Symbol	Pin Description	
A1, B1, B2, C1	OUT	Load Switch Output Pin	
A3, B3, C2, C3	IN	Load Switch Input Pin	
A2	LCE	Load Switch Control Enable Pin	
D1	GND	Ground Pin	
D2	VDO	Voltage Detector Output Pin	
D3	VDI	Voltage Detector Input Pin	

NO.EA-335-181030

ABSOLUTE MAXIMUM RATINGS

Absolute Maximum Ratings

Symbol	Item	Rating	Unit
V _{IN}	Load Switch Input Voltage	−0.3 to 6.0	V
Vouт	Load Switch Output Voltage	-0.3 to V _{IN} + 0.3	V
V _{LCE}	Lce Pin Voltage	−0.3 to 6.0	V
V _{VDI}	VDI Pin Voltage	-0.3 to 6.0	V
V _{VDO}	VDO Pin Voltage	-0.3 to V _{VDI} +0.3	V
V _{PP}	Pin to Pin Voltage	−0.3 to 6.0	V
l _{out}	Load Switch Output Current	6.0	Α
IPULSE	Load Switch Output Pulsed Current (Pulsed at 1ms, 10% Duty Cycle)	12.0	А
P _D	Power Dissipation ⁽¹⁾ (WLCSP-12-P3, JEDEC STD.51-9)	1000	mW
	Junction Temperature Range	-40 to 125	°C
Tstg	Tstg Storage Temperature Range		°C

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings are not assured.

RECOMMENDED OPERATING CONDITIONS

Symbol	Item	Rating	Unit
VIN	Input Voltage	2.3 to 5.5	V
Та	Operating Temperature Range	-40 to 85	°C

RECOMMENDED OPERATING CONDITIONS

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

⁽¹⁾ Refer to POWER DISSIPATION in SUPPLEMENTSRY ITEMS for detail information.

ELECTRICAL CHARACTERISTICS

 V_{IN} = 2.3 V to 5.5 V, I_{OUT} = 1 mA, C_{IN} = 1 μ F, C_{OUT} = None, unless otherwise noted. The specifications surrounded by are guaranteed by design engineering at $-40^{\circ}\text{C} \le \text{Ta} \le 85^{\circ}\text{C}$.

Electrica	I Characteristics					(Ta =	25°C)
Symbol	Item	С	onditions	Min.	Тур.	Max.	Unit
Load S	witch Section						
IQ	Quiescent Current	I _{OUT} = 0 mA			10	30	μΑ
$I_{Q(OFF)}$	Standby Current	$V_{LCE} = 0 V, V_{I}$	$_{N}$ = 5.5 V, V_{OUT} =OPEN			1	μΑ
I _{SD}	Shutdown Current	$V_{LCE} = 0 V, V_{I}$	_N = 5.5 V, V _{OUT} = GND			1	μΑ
Ron	Switch ON Resistance	I _{OUT} = 300 m/	A, V _{IN} = 3 V		9		$\boldsymbol{m}\Omega$
V_{IH}	LCE Pin Input Voltage, high	$V_{IN} = 5.0 \text{ V}$		1.0			V
VIL	LCE Pin Input Voltage, low	$V_{IN} = 5.0 \text{ V}$				0.4	V
RLCE_PD	LCE Pull-down Resistance	$V_{IN} = 2.3 \text{ V to}$	5.5 V		5.5		МΩ
ILCE	LCE Input Leakage Current	V _{IN} = 2.3 V to	5.5 V, V _{LCE} = GND	-1		1	μΑ
ton	Turn-on Time	V _{IN} = 3 V, R _L	= 50 Ω, C _{OUT} = 10 μF		2		ms
UVLO	Undervoltage Lockout Voltage ⁽¹⁾)				2.3	V
Voltage	Detector Section						
-V _{DET}	Detector Threshold ⁽²⁾	V _{VDI} falling		-V _{SET} x 0.98		-V _{SET} x 1.02	V
V _{HYS}	Detector Threshold Hysteresis			-V _{SET} x0.03	-V _{SET} x0.05	-V _{SET} x0.07	V
		2.0V < -V _{SET} , V _{VDI} = 2.0V			1.0		
Iss	Supply Current	$2.0V \le -V_{SET} V_{VDI} = -V_{SET} -0.16V$				3.3	μΑ
		≤ 5.0V	$V_{VDI} = -V_{SET} + 0.50V$			3.4	
	Voltage Detector Operating	Ta = 25°C		1.2(3)		5.5	.,
V_{VDI}	Voltage	-40°C ≤ Ta ≤	≤ 85°C	1.3(3)		5.5	V
Ivdo	Output Current (Nch. Driver Output Pin) Output Current (Pch. Driver Output Pin)	$2.0 \le -V_{SET}$ $V_{DS} = 0.5 \text{ V},$ $V_{VDI} = 1.5 \text{ V}$ $V_{DS} = -2.1 \text{ V},$ $V_{VDI} = 5.5 \text{ V},$,	1.0	2.0		4
			·	1.0	2.5		mA
t _{PLH}	Release Output Delay Time(4)					100	μs
Δ-V _{DET}	Detector Threshold	-40°C ≤ Ta ≤ 85°C			±100		ppm

All test items listed under Electrical Characteristics are done under the pulse load condition (Tj≈Ta = 25°C) except Detector Threshold Temperature Coefficient.

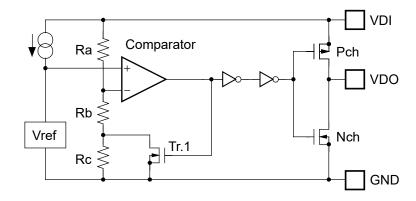
Temperature Coefficient

5

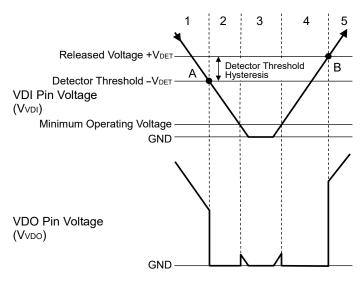
/°C

/∆Ta

⁽¹⁾ The UVLO detector threshold and the UVLO release voltage are between the min and max of UVLO with Typ. 0.02 V hysteresis.


^{(2) -}V_{DET} is defined as an actual detector threshold and -V_{SET} is defined as a preset detector threshold.

⁽³⁾ Each minimum value is the value of input voltage when the output voltage is maintained at 0.1 V or less.


⁽⁴⁾ Refer to "Release Output Delay Time" for details.

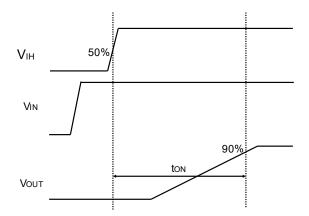
OPERATING DESCRIPTIONS

Voltage Detector Section

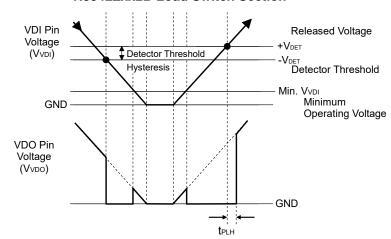
R5542Zxx2B Block Diagram

Step		1	2	3	4	5
Comparator (-) Pin Input Voltage		-	=	II	=	-
Comparator Output		L	Н	Indefinite	Н	L
Tr.1		OFF	ON	Indefinite	ON	OFF
Output Tr	Pch	ON	OFF	Indefinite	OFF	ON
Output Tr.	Nch	OFF	ON	Indefinite	ON	OFF

$$I = \frac{Rb + Rc}{Ra + Rb + Rc} \times VVDI$$

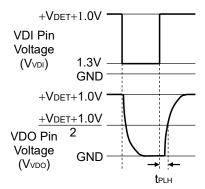

$$II = \frac{Rb}{Ra + Rb} \times VVDI$$

Operation Diagram


- 1. The V_{VDO} voltage is equalized to the V_{VDI} voltage.
- The V_{VDI} voltage drops to the detector threshold (A point) which means Vref ≥ V_{VDI} x (Rb+Rc) / (Ra+Rb+Rc).
 The comparator output shifts from "L" to "H" voltage and the VDO pin voltage will be equalized to the GND voltage.
- 3. If the V_{VDI} voltage is lower than the minimum operating voltage, the V_{VDO} voltage becomes unstable.
- 4. The VDO pin voltage is equalized to the GND voltage.
- 5. The V_{VDI} voltage becomes higher than the release voltage (B point) which means $V_{VDI} \times Rb / (Ra+Rb)$, and the comparator output shifts from "H" to "L" voltage, and the VDO pin voltage is equalized to the V_{VDI} voltage.

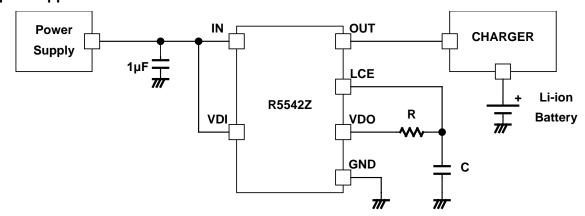
Note: The difference between a released voltage and a detector threshold voltage is a detector threshold hysteresis.

Timing Chart


R5542Zxx2B Load Switch Section

R5542Zxx2B Voltage Detector Section

Release Output Delay Time (tplh)


Release output delay time starts when the V_{VDI} voltage is shifted from 1.3V to +V_{DET} + 1.0V and ends when the output voltage reaches (+V_{DET} + 1.0V) / 2.

R5542Zxx2B Release Output Delay Time

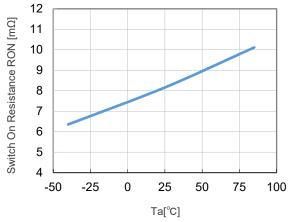
APPLICATION INFORMAITON

Typical Application Circuit

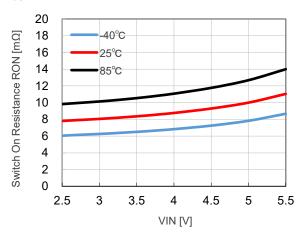
R5542Zxx2B Typical Application Circuit

TECHNICAL NOTES

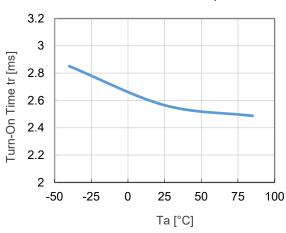
The R5542Z does not require any bypass capacitor between IN and GND. However connecting 1µF or more capacitor between IN and GND may improve the performance against noise. To make delay time from detect input voltage drop to load switch turn off, connect resistor and capacitor between VDO and LCE.

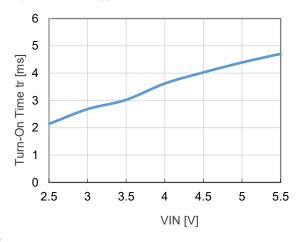

If the ramp rate of "IN" is faster than $50 \text{mV/}\mu\text{s}$, some voltage glitch may appear on "OUT". The glitch level depends on the capacitance connected to "OUT" and the ramp rate of "IN".

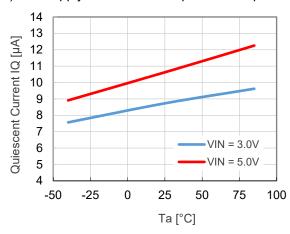
TYPICAL CHARACTERISTICS

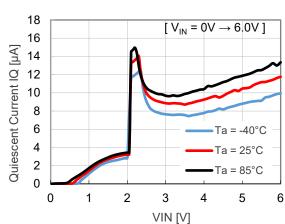

Typical Characteristics are intended to be used as reference data, they are not guaranteed.

1) ON Resistance vs. Temperature / Input Voltage


 $V_{IN} = 3.0V / I_{OUT} = 500mA$

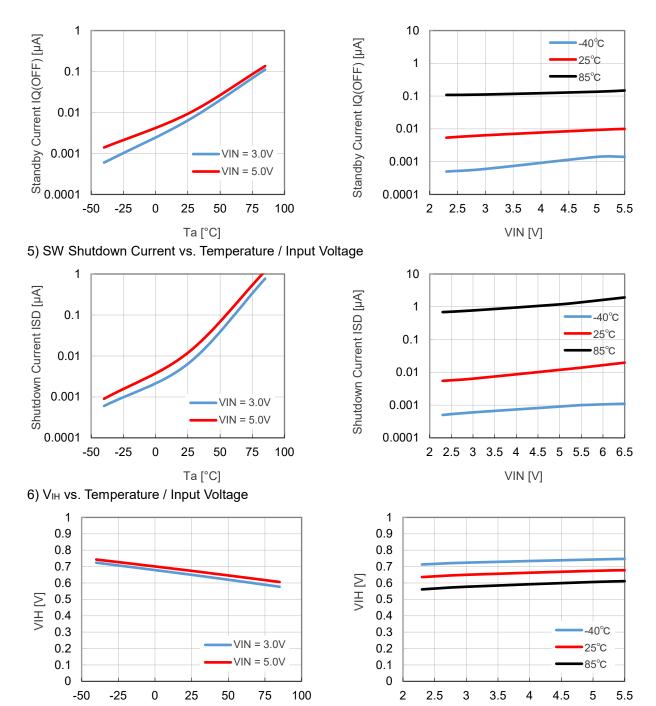

 $I_{OUT} = 500 \text{mA} / \text{Ta} = 25 ^{\circ}\text{C}$


2) Rising Time vs. Temperature / Input Voltage V_{IN} = 3.0V / R_{LOAD} = 50Ω / C_{OUT} = $10\mu F$

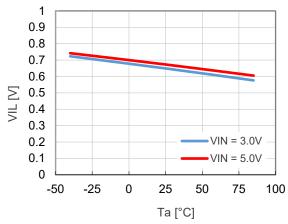


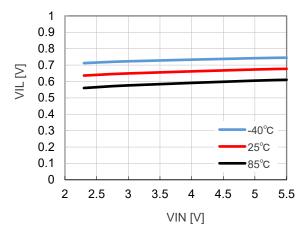
 $R_{LOAD} = 10\Omega / C_{OUT} = none / Ta = 25^{\circ}C$

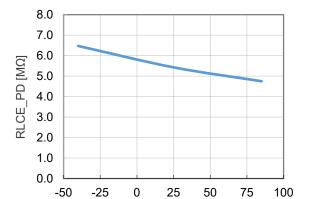
3) SW Supply Current vs. Temperature / Input Voltage



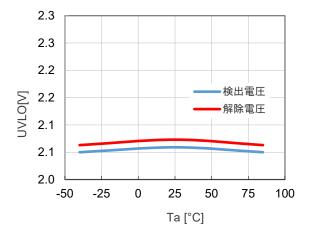
NO.EA-335-181030


4) SW Standby Current vs. Temperature / Input Voltage

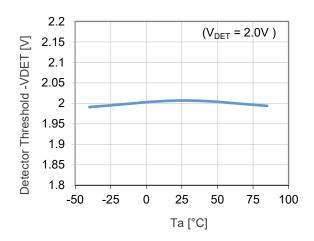

Ta [°C]

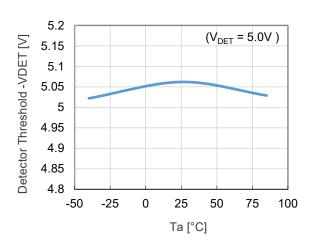

VIN [V]

7) V_{IL} vs. Temperature / Input Voltage

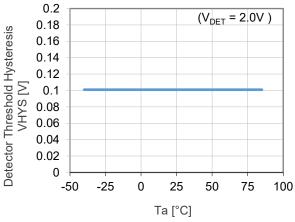


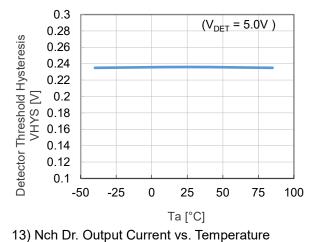
8) LCE Pull-down Resistance vs. Temperature



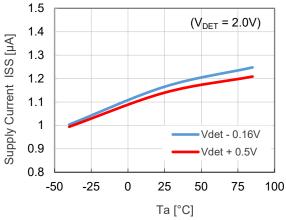

9) UVLO Detection/Release Voltage vs. Temperature

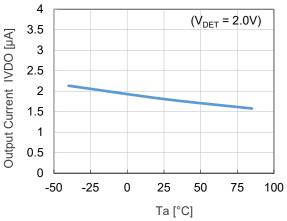
10) VD Detection Voltage vs. Temperature


Ta [°C]

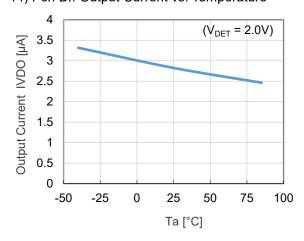


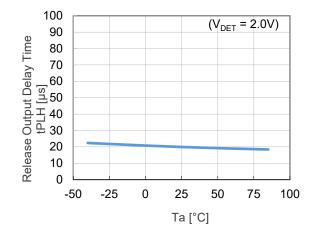
NO.EA-335-181030


11) V_{HYS} vs. Temperature

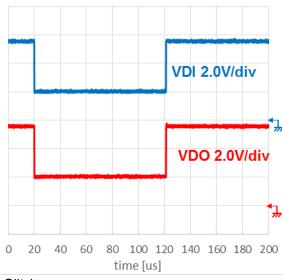


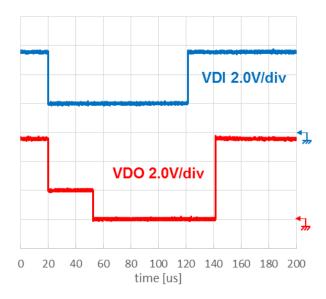
12) VD Supply Current vs. Temperature

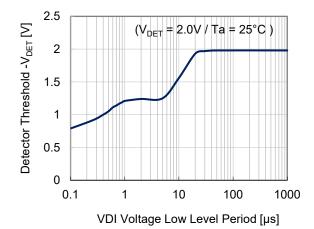


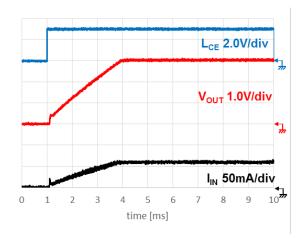


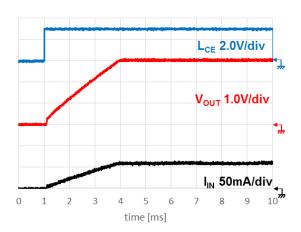
14) Pch Dr. Output Current vs. Temperature



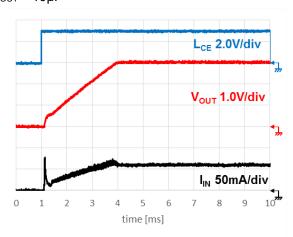


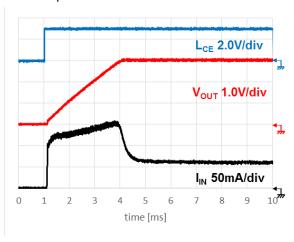

16) VD Transient Set-V_{DET} = 2.0 V V_{DI}"L" = 2.01 V 5.5V <-> -V_{DET} + 10 mV

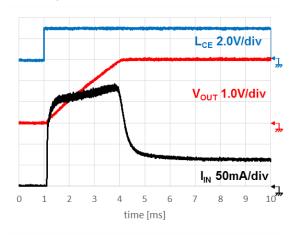

17) VD Glitch

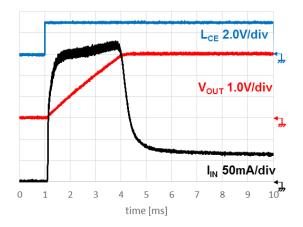

13

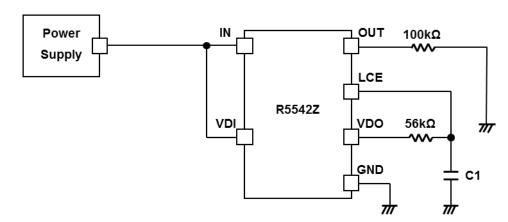
NO.EA-335-181030


18) SW Inrush Current V_{IN} = 3.0V / R_{LOAD} = 50 Ω C_{OUT} = 0.1 μ F

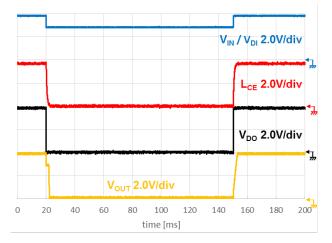

 $C_{OUT} = 1.0 \mu F$

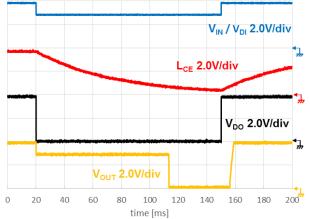

 $C_{OUT} = 10 \mu F$


C_{OUT} = 100µF

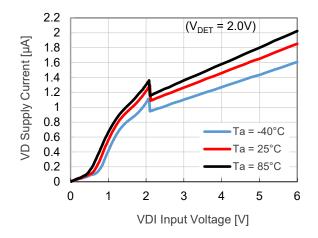

 $C_{OUT} = 100 \mu F \times 2$

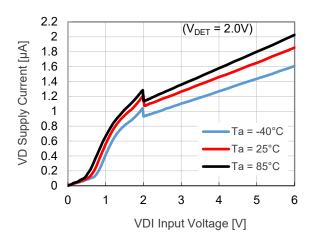
 $C_{OUT} = 100 \mu F \times 3$



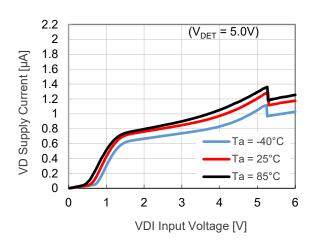

19) VD-SW Reset

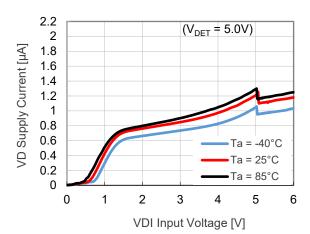
$$V_{IN} = V_{DI} = 3.8V < -> 2.8V / C1 = 0.01 \mu F$$


$$V_{IN} = V_{DI} = 3.8V < -> 2.8V / C1 = 1.0 \mu F$$



NO.EA-335-181030


20) VD Supply Current vs. Input Voltage V_{DI} = 0 V \rightarrow 6.0 V

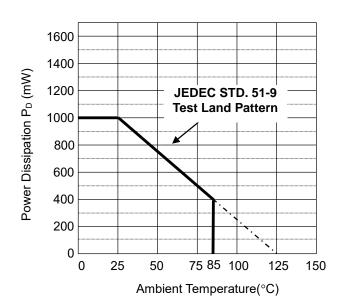

$$V_{DI}$$
 = 6.0 $V \rightarrow 0 V$

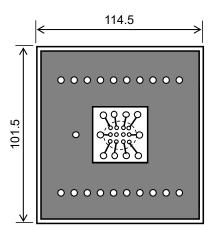
$$V_{DI} = 0 \text{ V} \rightarrow 6.0 \text{ V}$$

$$V_{DI}$$
 = 6.0 $V \rightarrow 0 V$

Ver. B

The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following conditions are used in this measurement.

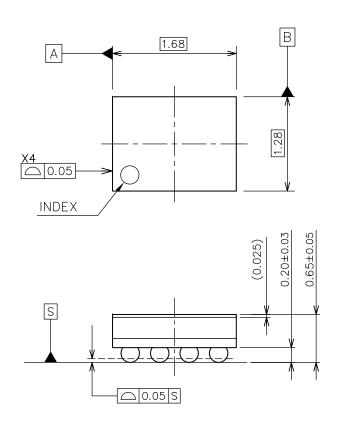

Measurement Conditions

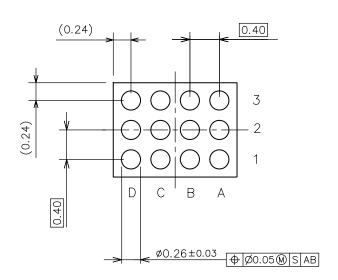

JEDEC STD. 51-9 Test Land Pattern		
Environment	Mounting on Board (Wind Velocity = 0 m/s)	
Board Material	Glass Cloth Epoxy Plastic (Four-Layer Board)	
Board Dimensions	101.5 mm x 114.5 mm x 1.6 mm	
Copper Ratio	Outer Layers (First and Fourth Layers): Approx. 60% Inner Layers (Second and Third Layers): Approx. 100%	

Measurement Result

 $(Ta = 25^{\circ}C, Tjmax = 125^{\circ}C)$

JEDEC STD. 51-9 Test Land Pattern		
Power Dissipation	1000 mW	
Thermal Resistance	θja = (125 - 25°C) / 1.0 W = 100 °C/W	


Power Dissipation vs. Ambient Temperature


() IC Mount Area (mm)

Measurement Board Pattern

Nisshinbo Micro Devices Inc.

Ver. B

WLCSP-12-P3 Package Dimensions (Unit: mm)

Nisshinbo Micro Devices Inc.

VI-160823

No.	Inspection Items	Inspection Criteria	Figure
1	Package chipping	A≥0.2mm is rejected B≥0.2mm is rejected C≥0.2mm is rejected And, Package chipping to Si surface and to bump is rejected.	B C
2	Si surface chipping	A≥0.2mm is rejected B≥0.2mm is rejected C≥0.2mm is rejected But, even if A≥0.2mm, B≤0.1mm is acceptable.	B C
3	No bump	No bump is rejected.	
4	Marking miss	To reject incorrect marking, such as another product name marking or another lot No. marking.	
5	No marking	To reject no marking on the package.	
6	Reverse direction of marking	To reject reverse direction of marking character.	
7	Defective marking	To reject unreadable marking. (Microscope: X15/ White LED/ Viewed from vertical direction)	
8	Scratch	To reject unreadable marking character by scratch. (Microscope: X15/ White LED/ Viewed from vertical direction)	
9	Stain and Foreign material	To reject unreadable marking character by stain and foreign material. (Microscope: X15/ White LED/ Viewed from vertical direction)	

Nisshinbo Micro Devices Inc.

- The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to our sales representatives for the latest information thereon.
- 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of our company.
- 3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
- 4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under our company's or any third party's intellectual property rights or any other rights.
- 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. Anti-radiation design is not implemented in the products described in this document.
- 8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
- 9. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
- 10. There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact our sales or our distributor before attempting to use AOI.
- 11. Please contact our sales representatives should you have any questions or comments concerning the products or the technical information.

